
Interactive music systems within multimedia game
development environments

V.J. Manzo, PhD

Worcester Polytechnic Institute
100 Institute Road

Worcester, MA 01609
+1 (508) 831-5246

vj@wpi.edu

Dan Manzo
Worcester Polytechnic Institute

100 Institute Road
Worcester, MA 01609

+1 (508) 831-5246
dvmanzo@wpi.edu

ABSTRACT

Gaming development programming environments allow for a
convergence of multimedia elements within a single environment.
This article mentions several game programming environments
and focuses on two specifically, noting how they may be used bob
non-programmers to create rich, immersive, interactive music
systems that support the composition and performance efforts of
non-musicians. Research into the efficacy of such systems to
support musicianship stems from prior interactive music projects
(EAMIR, IMTCP) that involved the development and use of
software applications designed to support musical creativity by
musicians and non-musicians. The use of gaming systems for such
applications may be useful to individuals without formal
programming experience who have an interest in utilizing
multimedia tools to create interactive music systems. Such
systems traditionally allowed end-users to compose and perform
through software. Issues of accessibility, pedagogy, design, and
creativity within these development environments are discussed.

Keywords
Interactive media, music systems, music theory, ear-training,
harmony, adaptive instruments, games, music programming,
music technology, music education, informal music learning

Adaptive musical instruments can provide scaffolding by which
disabled and special needs populations acquire musicianship
skills. The instruments themselves are created with accessibility in
mind for a specific purpose, such as to play chords or percussive
sounds, with a specific individual or group in mind with which the
instrument will help overcome some limitation, perhaps physical
or mental, on the part of the performer. Adaptive instruments are
acoustic or electronic in design and have been shown by Crowe
(2004) to be useful in music education and music therapy
contexts. Advances in technology have helped many new adaptive
instrument projects to form including Skoog (Schogler, 2010),
AUMI (Pask, 2007), My Breath My Music Foundation (Wel,
2011), and EAMIR (Manzo, 2007).

As Hunt and Wanderly (2002) explain, the paradigm of
instrument design traditionally has focused primarily on principals
of acoustics. Design concepts that inhibit string vibration or
airflow in ways that compromise musical variables such as
timbral qualities and dynamic range in undesirable ways were and
are concerns for makers of acoustic instruments. With electronic
instruments, the mapping of musical variables to control can be

similar to traditional instruments or completely unrelated. In this
way, instrument designers can pursue concepts that allow for
novel idiomatic writing and performance without the acoustical
concerns of sound reproduction.

Developing musicianship skills using the assistance of a
traditional acoustic instrument like guitar or piano requires some
level of proficiency on that instrument. During the process of
developing proficiency on that instrument, the participant might
be expected to focus his or her attention to specific cognitive
musicianship skills such as hearing the chord progression and the
harmonic flow as they are playing, and not focus on the physical
task of performing on the instrument. To this extent, if asked to
listen to a recording and identify the chord progression using a
traditional instrument as an aid, a musician who is unfamiliar with
the traditional instrument, might focus most of his or her attention
on ensuring that he or she is playing the chords correctly and miss
the purpose of the activity altogether: identifying the chord
progression used on the recording. Using a software-based
musical instrument could remove some of the need for attention to
physical performance issues that one might encounter while
performing an unfamiliar acoustic chordal instrument.

Separating the physical act of performing from the cognitive
function of hearing harmony is important to educators because it
allows musicing (Elliott, 1995) to occur by students without
making them wait until they have learned the performance skills
of a traditional instrument in order to play chords. In this way,
playing chords and, conceivably, being able to compose and
perform with them can occur much sooner with a software-
instrument than with acoustic instruments. By minimizing the
number of layers between the student and the task, the musical
concept can be isolated to some extent and understood apart from
the context of it being performed on a particular instrument.

The Interactive Music Technology Curriculum Project (Manzo &
Dammers, 2010), or IMTCP, was a study in which students
learned to compose and perform informally using non-traditional
software-based instruments. Musical concepts and compositional
and performance techniques were explained and demonstrated to
non-traditional music students and students who were not
involved in their school’s music program through the use of
software-based musical systems in an informal manner similar to
that of Green (2002, 2008). Similar systems may be developed
using video game programming environments, since video games
commonly map music and sound variables to accessible controls.

In the game Super Mario Brothers (1985), the controls for the
main character allow him to jump and move forward or backward.

When the game begins, there is no explanation given to describe
the gameplay or the mechanics of the controls; players learn the
basic gameplay informally through interactions within the
environment.

Figure 1. Character cannot avoid enemy without an action.

In Figure 1, we see that an approaching enemy encroaches upon
the main character. If the player does not explore the controls
presented to him on the game controller, the enemy will touch the
character and the level will restart.

Figure 2. Main character jumps over the enemy.

Exploration of the game controls leads the player to learn that he
can cause the main character to jump. Besides running, this is the
only action that main character can make in this game. As the
enemy approaches, the player causes the main character to jump.
The environment within the game is ordered so that jumping over
the enemy simultaneously, and inadvertently, hits the question
mark box above the enemy. This results in the character being
rewarded with one coin. Through this design, the player
informally learns that hitting boxes yield positive rewards and
jumping over the enemy is necessary. Informal instructional
techniques are possible with thoughtful level design.

DEVELOPMENT ENVIRONMENTS

Lack of formal programming skills can be a hindrance to music
researchers who seek to develop rich music-oriented tools.
However, videogame programming environments already contain
tools and frameworks for generating and manipulating audio since
these are generally a major component of videogame design. As
these environments, and the video game development profession,
have grown in popularity through the years, new development
architectures have emerged that facilitate game development with
minimal programming skills. Game development environments
also allow developers to deploy their games to multiple devices
and platforms such as desktop computers, browsers (HTML5),
and mobile devices.

Construct 2
One such development environment is the PC-based application
Construct 2 (2014) developed by Scirra. It is free for non-
commercial use.

Figure 3. Construct 2 main layout showing assets

As shown in Figure 3, Construct 2 allows you to drag and drop
images, audio, and other assets onto a blank canvas called the
Layout. For each asset in this game world, a number of
characteristics can be defined. Is it a solid? Is it heavy? Is it
visible? As the Layout is built, the game may be previewed within
a web browser. This simple game is used to allow the end-user to
click on game characters to play back pitched sounds.

The Event Sheet presents a simplified programming approach. As
shown in Figure 4, the Event Sheet allows the developer to use
conditional statements to define the rules of the game world. Each
asset or control mechanism may be used to complete these
statements. Construct 2 asks a number of questions in order to
complete this task.

Figure 4. Construct 2 event-based programming sheet

As shown in Figure 4, the developer has selected the mouse as the
control to be defined. Construct 2 then prompts the developer with
actions germane to the mouse such as “when left button is down” ,
“when left button is up”, and so on. The prompts continue
allowing the developer to select objects that are changed by the
initial action. This type of event-based programming may be
useful to non-programmers because there is no scripting syntax to
learn. There are only logic statements that the developer must
think through.

A demonstration level is available (see Discussion section) that
shows how audio clips have been assigned to two characters.
When the mouse clicks on a certain area of the platform, it plays
the sound of each character standing on that area. As shown in
Figure 5, two characters are stacked on top of each other. The
end-user of this game would click on the platform and hear the
interval of a perfect fifth performed; one note derived from each
of the characters.

Figure 5. Note-making characters are stacked as pitches

Unity 3D
Unity 3D (2014) is another popular game development
environment. It is free for non-commercial use and available for
Mac and PC platforms. Unlike Construct 2, Unity 3D is useful for
building three-dimensional game environments with support for
two-dimensional worlds as well.

Like Construct 2, Unity 3D uses a drag and drop approach to
building the gaming world, though experience with Javascript or
C# programming, even a superficial understanding, will allow for
more sophisticated games to be created. Still, assets like
characters, camera views, props, sound sources, and more can
simply be dragged into the game world and repositioned. As
shown in Figure 6, a Unity use may add geometric shapes and
then assign textured graphic patterns to them. The environment
pictured was made from a single three-dimension object with an
image of a grassy texture applied to it. The sky is also an image.
The developer may add a light source to the world, which will be
perceived by the end-user as a sun. Unity allows for control over

the physics of the world you create. This may be used to create an
environment in which sound exploration is possible.

Figure 6. Basic Unity 3D terrain showing shapes with textures

As one develops in Unity, he or she may preview the virtual world
from within the development environment. In this game, a simple
hill, a pond, and trees have been added using Unity’s built-in
models. However, models by animators and artists are readily
available online, and can be imported into Unity with ease.

A demonstration level is available (see Discussion section) as
shown in Figure 7. The sound of flowing water has been dragged
onto the model of the pond. Unity automatically applies the
physics of our world to this gaming environment, so as the game
character approaches the pond, the sound of the water increases
slowly in volume, simulating the way one would perceive these
sounds in real life.

Figure 7. First-person character explores the environment

Such an environment could be used for developing interactive
listening environments, where the end-user is expected to detect a
timbre sound from among others, or to explore a virtual world
using listening skills to identify a specific sound.

DISCUSSION

There are numerous music-oriented video games in existence.
Game development programming environments make use of
many of the same sound generation technologies that music
technology applications use. There are mechanics for playing,
organizing, listening, recording, and manipulating sounds, all of
which can be delivered in a controlled environment. By
developing the environment in which players interact with the
mechanics of gameplay, a researcher can structure the order in
which events occur and to teach musical concepts informally.
Such informal learning can occur through exploration of the game
world with accessible controls and limited written or verbal
communication.

Accessible game development environments allow the creation of
rich musical applications, but programming skills are not a
prerequisite. Games similar to those mentioned in this paper can
be constructed similarly, modifying their objectives, musical
results, and rewards. Concepts of theory and composition can be
demonstrated and explained by further developing the Construct 2
example used in this document. Similarly, aspects of critical
listening and timbral recognition can be created by further
development of the Unity 3D demonstration. The game
development environments themselves are intuitive tools that can
provide an accessible development interface for educators and
researchers, and facilitate informal music learning opportunities
for students.

Construct 2 and Unity 3D are available for download from
www.scirra.com and www.unity3d.com respectively. The
demonstration levels created for this article may be downloaded
from www.vjmanzo.com/demos/game_devs/.

BIOGRAPHIES
V.J. Manzo (PhD Temple University, M.M. New York
University) is Assistant Professor of Music Technology and
Cognition at Worcester Polytechnic Institute (WPI). He is a
composer and guitarist with research interests in theory and
composition, artificial intelligence, interactive music systems, and
music cognition. V.J. is the Oxford University Press author of the
book MAX/MSP/Jitter for Music (2011) on developing software-
based interactive music systems for composition, performance,
instruction, and research.

Dan Manzo (BA New Jersey Institute of Technology, MS
candidate at Worcester Polytechnic Institute) is a programmer,
pedagogue, and musician with interests in web applications,
interactive media & gaming, information technology education,
and multimedia performance. He is the founder of Knockout
Media and has authored numerous projects in these genres.

 REFERENCES

[1] Construct 2. (February 2014). Scirra Construct 2. Retrieved
from http://www.scirra.com

[2] Crowe, B. J. (Winter, 2004). Implications of technology in
music therapy practice and research for music therapy
education: A review of literature. Journal of Music Therapy,
41(4), 282-320.

[3] Elliott, D. (1995). Music matters: A new philosophy of music
education. New York: Oxford University Press.

[4] Green, L. (2002). How popular musicians learn. Aldershot,
England: Ashgate Publishing Limited.

[5] Green, L. (2008). Music, informal learning and the school: A
new classroom pedagogy. Surrey, England: Ashgate
Publishing Limited.

[6] Hunt, A. & Wanderly, M. (2002). Mapping performer
parameters to synthesis engines. Organised Sound:
Cambridge University Press, 7(2) 97-108.

[7] Manzo, V. J., & Dammers, R. (August, 2010). Interactive
music technology curriculum project (IMTCP). Retrieved
from http://www.imtcp.org

[8] Manzo, V. (Winter, 2007). EAMIR [The electro-acoustic
musically interactive room]. Retrieved from
http://www.eamir.org

[9] Pask, A. (Interviewer) & Oliveros, P. (Interviewee). (July,
2011). The adaptive use instruments project. Retrieved from
http://cycling74.com/2007/12/07/the-adaptive-use-
instruments-project/

[10] Schogler, B. (July, 2010). Skoog music. Retrieved from
http://www.skoogmusic.com

[11] Super Mario Brothers [video game]. (1985). Tokyo, Japan:
Nintendo EAD

[12] Unity 3D. (February 2014). Unity. Retrieved from
http://www.unity3d.com

[13] Wel, R. V. D. (July 2011) . My Breathe My Music
Foundation. Retrieved from
http://www.mybreathmymusic.com

